$K$-Dimensional Coding Schemes in Hilbert Spaces
نویسندگان
چکیده
منابع مشابه
K -Dimensional Coding Schemes in Hilbert Spaces
Abstract. This paper presents a general coding method where data in a Hilbert space are represented by finite dimensional coding vectors. The method is based on empirical risk minimization within a certain class of linear operators, which map the set of coding vectors to the Hilbert space. Two results bounding the expected reconstruction error of the method are derived, which highlight the role...
متن کاملGeneralization Bounds for K-Dimensional Coding Schemes in Hilbert Spaces
We give a bound on the expected reconstruction error for a general coding method where data in a Hilbert space are represented by finite dimensional coding vectors. The result can be specialized to Kmeans clustering, nonnegative matrix factorization and the sparse coding techniques introduced by Olshausen and Field.
متن کاملContinuous $k$-Fusion Frames in Hilbert Spaces
The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames which is important for frame applications, have been specified completely for the c...
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کاملContinuous $ k $-Frames and their Dual in Hilbert Spaces
The notion of $k$-frames was recently introduced by Gu avruc ta in Hilbert spaces to study atomic systems with respect to a bounded linear operator. A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous super positions. In this manuscript, we construct a continuous $k$-frame, so called c$k$-frame along with an atomic system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2010
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2010.2069250